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INTRODUCTION

Let the subspace Y of C[a, b] of dimension n + 1 (n ~ 0) be spanned by
a complete extended TchebychefT system Uo, ..• , Un' It is possible to find for
given nodes to, ..., t n

a basis {Yo, ..., tn } of Y such that

(Kronecker delta),

and to obtain an interpolating projection

P: C[a, b] -+ Y

defined by

n

Pf= L f(tJ Yi-
i~O

It is seen that

The function
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has the properties that
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L(t) = 1 if t is a node, and if 1~ i ~ n, L is maximized on
[t i_ 1 , tJ at a unique point Ti and t i- 1 < Ti < ti' L'(T;) = O.

Clearly, if n~ 1 IIPII =max{L(Td, ..., L(Tn )}, and IIPII depends upon the
choice of the nodes t l' ... , tn _ l'

It was conjectured in [8] that, under the hypotheses laid down above on
Y and P, the norm of P is minimal if

for some unique value C y

(generalization of the Bernstein conjecture regarding Lagrange interpola­
tion [1]), and furthermore if IIPII > C y, at least one of the local maximum
values of L is less than C y (generalization of the Erdos conjecture on
Lagrange interpolation [5]). One strong argument for the plausibility of
this new conjecture is, of course, the upholding of the two original conjec­
tures in their original context as theorems. Optimal Lagrange interpolation
is indeed characterized by their conditions [6,2, 7]. In the above-men­
tioned article [8], it was also pointed out that two impediments existed to
the immediate successful generalization of these two conjectures, although
there are at this time several choices of the range space Y for which the
above generalized conjectures are indeed valid [2, 7, 8, 9, 10], as well as
examples of interpolation with spaces of functions on a complex domain
for which the conditions of Bernstein and Erdos have been shown to
characterize minimal norm interpolation [3,4]. It is the purpose of this
communication to lay down a solution of the first of these two difficulties,
in the framework of which there may be a possibility of overcoming the
second.

AN OVERVIEW OF THE PROBLEM

In the context described above, we let

Ai=L(T;)= max L,
[Ii- I, Ii]

i E {I, ..., n},

and we let the function in Y which agrees with L on the interval [t i-I' tJ
be denoted by Xi' Finally, we denote by Ti the local maximum on the
interval [t;_I' tJ, again for i E {I, .." n}. The derivative of the function
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exists and is given by a matrix

(
Ok)n n-l

at; ;= 1 j= 1 '
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(1)

in which we will let the index i represent columns and the index j represent
rows in the following discussion. We denote by Jp the determinant of the
square matrix derived by removing the pth column, for each p E {1, ..., n}.
To establish the generalized Bernstein and Erdos conjectures of [8] as
valid characterizations of optimal interpolation into Y, it suffices to show
that

(i) Jp#-O for all possible choices of the nodes and for

PE{1, ...,n},

and
(ii) Jp alternates in sign.

The first step of proof is the establshment of a more explicit expression for
the entries of the derivative matrix. We have in previous cases and also in
this general context the equivalence

(2)

The second step, and the first difficulty in the way of generalization,
mentioned in [8], is the reduction of the matrix by certain column and
row cancellations, to an equivalent matrix

(3)

reducing (i) and (ii) to a question of whether the set of functions
{Ql, ...,qn}\{qp}, pE{1, ...,n}, admits a non-trivial linear combination
which is zero on the points t 1, ... , tn _ 1. In the next section of this com­
munication, a general method for carrying out this crucial step of reduction
of the problem to a question about a matrix of form (3) will be laid down.
The final step in the argument is, of course, the last-mentioned difficulty of
[8], namely that of showing that the question about a matrix of form (3)
can be answered in the particular case under consideration. Some advance
has been made to date on this aspect of the problem as well [9, 10], and
the results presented here make it apparent that the characterization of
optimal interpolation with much broader classes of functions by the
Bernstein and Erdos criteria would immediately follow from progress on
this front. We now present the results.
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THEOREM. Let Y be an n + 1 dimensional subspace of C[a, b] which is
spanned by an extended complete TchebychejJ system, and let a system of
nodes to, ..., tn be chosen as described above, and an interpolating projection
built on these nodes. Then to the matrix denoted by (1) corresponds a matrix
of evaluation of the form (3).

COROLLARY. If the space Y is a space of polynomials, the corresponding
matrix ofform (3) can be written such that the functions qI' ... , qn are them­
selves polynomials.

Proof of the theorem. Given a set of basis functions {uo, ..., un} for Y
and a set of nodes {to, ..., tn } in [a, h], we define

D = det(uk(tl))k~o 7=0'

For each i E {O, ..., n}, another determinant Di( t) is also defined by
replacing in D the entries UO(ti)' ..., uAtJ in the ith column respectively by
the entries uo(t), ..., un(t). Clearly, we have

ylt) = D -I Dlt). (4)

We also write V for the Vandermonde matrix, in which the functions
Uo, ..., Un are replaced by the monomials 1, t, ..., tn and similarly define Vi(t)
for i E {O, ..., n}. We note that the function Vj(t), defiI).ed by

i E {O, ..., n}, (5)

in fact depends upon the nodes to, ..., tn' with the exception of (, as well as
depending upon t. Furthermore, Vi is symmetric in these variables and, by
the hypothesis that Y is spanned by an extended Tchebycheff system, is
defined, continuous, and never zero on [a, by + I. Writing for j E {O, ..., n}
the expression Vi(t; tj ) to emphasize the dependence of Vj(t) upon tj while
t and all of the other variables are held fixed, we note that

(6)

(7)

In other words, Vi in its dependence upon tj and V j in its dependence upon
t j are the same function.

We now rewrite (4) for j E {O, ..., n},

yit) = VD- IDi t )[ Vit)] -I Vi t )V-I

= [Vit)]-I VP) Vit) V-I,

noting that the expression V/ t) V- 1 is simply the jth fundamental
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Lagrange interpolating polynomial of degree n on the given set of nodes,
with the more usual expression

(8)

Returning now to consideration of the derivative matrix (1), using
formula (2) to write the entries, we have

(9)

Using (7), we may rewrite (9) as

(-[Vitj)]-IVj(T;) Vj(Ti ) V-IX;(tj))7~1 j:l. (10)

At this point, we may, keeping (8) in consideration, multiply the jth row
of the matrix for j E {I, ..., n - I} by

n

Vitj) Il (tj - tk )

k=O
k ""j

and divide the ith column for i E {I, ..., n} by

the effect of all of which is to reduce (10) to the form

(Vj(TJ(tj - TJ -I X;(tj))7= 1 j::. (11 )

Now, in the case that Y is the space spanned by polynomials of degree n
or less [6], the functions Vo, ..., Vn are all constant, and therefore the
matrix (11) is already in the form (3), with

iE{I, ...,n}.

In other spaces, such as those of incomplete polynomials [8], the functions
VI' ..., V n were so constituted that V.(t)= ... = Vn(t) for all tE [a, b],
enabling their immediate cancellation from (11). In the general case under
consideration here, the ith column of (11) may, for i E { 1, ..., n}, be divided
by the product V. (T;) ... V n _ I (T;), resulting in a matrix of the form

(12)
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in which the function Q is defined by

n-l

Q(t; t;)= n (Uk(t))-l
k~1

k #.1

for jE {l, ..., n-l}.

By (6), Q( t, s) is well-defined as a function on [a, bY The matrix in the
form (12) is at last an evaluation matrix of the form (3), with

for iE {l, ..., n}, (13 )

and this concludes the proof of the theorem.

Proof of the corollary. We begin by obtaining explicit expressions for
the fundamental functions. Since they are polynomials, it is possible to
avoid the abstraction of Cramer's Rule and Vandermonde determinants.
We may write explicitly

The functions fl t) are symmetric with respect to {to, ..., tn } \ { tI}' For
j # I, we write !J(t; t) to denote that tj is the independent variable, the
others being held constant. The important identity

(14 )

is a restatement in our particular context of (6).
Using equivalence (2) to rewrite matrix (1), we may carry out the matrix

manipulations outlined in the previous section, reducing matrix (1) in this
context to the matrix

which is already an evaluation matrix of form (12), as noted in the proof
of the theorem above, and as implied in the immediate context by the iden­
tity (14). One further step now converts this matrix into one in which the
entries are polynomials instead of rational functions. Multiplication of the
jth row, for j E { 1, ... , n - I}, by the factor

IJ n- In n fl(Tk ; tj )

k= 1 1= I
1#.1
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yields a matrix, again of form (3), in which we may define the entries qi(tj),
for i E {I, ..., n}, j E {l, ..., n - I}, by

(16)

in which by (14) we may regard ql' ... , qn as polynomials evaluated at
successive points t l' ... , tn _ 1 down the columns of the matrix. Only the
representation of these functions changes from row to row. This completes
the proof of the corollary.

CONCLUDING REMARKS

As stated in the introduction, two problems were noted in [8], upon
whose solution the establishment of general results on optimal interpola­
tion seemed to depend. The first of these problems, reduction of the matrix
(1) of partial derivatives to a matrix of evaluation, has been solved in com­
plete generality. It is hoped that the new technique may be used to solve
particular problems in which algebraic complexity has caused previous
methods of solution to be totally inapplicable, or to fail.
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